
Seeding and
Bezier Tracking
in LArSoft
Ben Jones

1. Seed Finding Updates
Reminder: seeds are formed by short groups of spacepoints with a strong
directionality.

They seek parts of tracks where there is an unambiguous track direction in
3D

Parameters are:

 Filter, Merge - SpacePointService parameters
 SeedMode - 0 (find 1 seed) 1 (find many seeds)
 SeedLength - in cm
 MinPointsInSeed - this many points within SeedLength cm
 AngularDev - SD of seed angular deviation from spine
 Source - 0 (from cluster combos) 1(from bare hits)
 HitModuleLabel, ClusterModuleLabel – data products

Improvements since Last Time
�  Improved direction finding – much more robust at

finding seed segments
�  Can be fed on plain hits (now default) as well as

cluster combinations
�  New geometrical methods:

�  Seed->GetAngle(Seed AnotherSeed)
�  Seed->GetDistance(Seed AnotherSeed)
�  Seed->GetProjAngleDiscrepancy(Seed AnotherSeed)
�  Seed->GetProjDiscrepancy(Seed AnotherSeed)

�  Two new event display views

old new

New evd views for
Seeds:

This slide:
Ortho3D

Next slide:
3D view

Bezier Tracks
�  In multi-seed mode, seeds define a clear

pathway for 3D track
�  By connecting them with 3rd order Bezier curves

we get a smoothly parameterized track
�  This object is called a BezierTrack, and can be

stored in the event as a set of points and
directions (one for each seed) as a recob::Track

�  Each segment has a seed at each end and is a
continuously parameterized function in 3D

�  The segments are in fact totally hidden from the
end user (next slides)

Bezier Curve Segments

R(s) = s3 P0
 + (1-s)s2 P1 + (1-s) 2s P2 + (1-s) 3 P3

P0 and P3 are the seed points
P1 and P2 are the seed points + seed direction *(some scale)

The scale is set such that|P3 – P2|=|P2 – P1|=|P3 – P0|/4

Curve matches seed
point and direction
perfectly at each
seed, and varies
continuously between
them

Local Operations on Bezier
Curves

�  Since it is a continuous function, can ask for
position, curvature, direction, etc at any point

�  Each segment is parameterized by 0<s<1
�  Lengths etc are not calculated analytically, but

rather numerically by dividing curve up and
summing displacements – hence always do
length calculation with some finite resolution

�  Operations to find positions along a Bezier
segment are performed by a helper object
called BezierCurveHelper in TrackFinder

Geometrical Methods All implemented
and tested

The Whole as the Sum of its
Parts
�  User never needs to know about

Bezier segments since they are
hidden

�  On construction, the track works
out the length of every segment
and the length of the track, and
so figures out how to apportion a
global s value, 0<s<1 along the
entire track, between segments

�  User can say GetTrackPoint(0.25)
to find the point which is ¼ way
along the entire track

�  Likewise GetDirection(s),
GetCuvature(s), etc

s

All fully implemented
And lightly tested

Bezier Track in evd
Raw Reconstructed 3D track

Bezier track in 3D

Physics Methods
�  BezierTracker takes track and

collects all nearby hits in each
view, using GetClosestAproach
method

�  Local track pitch in 3D is known at
every point, so fully pitch corrected
dQdx in 3D is stored for each track
segment and for each view

�  Easy to go from this to an average
per view also

�  We also know the track curvature
smoothly along the trajectory, so
RMSCurvature along the track can
be calculated

Curvature along track

Kinks much
easier to see
end-on!

dQdx along track in
each view…

This would be very very hard with spacepoints alone

Coming up

� Multi track events (narrowly missed the cut
for today)

� Verification against mc-truth information
� Tuning of track fitting parameters

